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ABSTRACT

The essential unknown quantity in a compressible turbulent bound-
ary layer is shown to be the kinematic Reynolds stress, as in incompressible
flow, and does not explicitly involve density fluctuations. Based on this,
the incompressible turbulent viscosity proposed by Mellor 1s extended to in-
clude compressible flows. The same values of the three empirical constants,
which were obtained solely from constant-property, constant-pressure experi-
ments, are also used. Without making any further assumptions beyond those
related to the usual time averaged boundary layer equations, this system of
equations has been programmed for numerical solution. Solutions have been
compared to a considerable amount of constant-pressure data in the range
from subsonic flows to flows with Mach numbers around 5.0 and the comparisons
are quite favorable. Much less pressure gradient data are available but com-
parison was made to some axisymetric flow data taken in a positive pressure
gradient which indicated fairly good prediction of the boundary layer growth,
while at the same time pointing up a systematic error in the detailed profile
shape prediction in regions of finite longitudinal curvature. This effect
has been identified on physical grounds but has yet to be incorperated in the
turbulent viscosity model. Unfortunately high speed data taken on a flat
wall in an adverse pressure gradient and with a well defined separation point
does not seem to be readily avallable.

Heat transfer data in incompressible flows with variable pressure
gradients have been checked against calculations and the comparisons are
generally favorable.
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NOTATION

constant used in Equation (36) for initialization of profiles.
constants used in satisfying outer boundary condition.

exponent used in Equation (35) for external velocity distribu-
tion.

coefficients in pseudo-linear forms of momentum and energy

equations.

= ———jiz , coefficient of skin friction.
1
5 p U
e

coefficient of skin friction for an incompressible flow at

the same value of RO as Cf .

) 5*/3

R
TAT. % LAT.

- (

= (p U - 55)/er .

= (02 - 2)/n - n) .

enthalpy

arbitrary reference enthalpy.

total enthalpy.
o] o
=(h -h )/h .
(h_ - h )/n
molecular thermal conductivity.

Clauser constant used in the effective viscosity function
(taken here to be 0.016).

empirical constant.

representative scale in x direction.
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Pr

"rar.

IONG.

=

reference length used for x in Eguation (35).

Mach number.

Mach number used to identify data of Winter, Smith and
Rotta [237 .

pressure
*
= o .
(e U), & /o U
molecular Prandtl number defined by Equation (1k).

turbulent Prandtl number defined by Equation (15).
heat flux.

= (peUB*)x/peU .

lateral radius of wall curvature.

longitudinal radius of wall curvature.

= B;U/& .

= 6Z:U/v_S

= XU/Km .

*
= Ud /gﬁ , displacement thickness Reynolds number.
= oU/v , momentum thickness Reynolds number.

0
defined by Equation (D5).

given by Equation (D8).

Gy

= — Stanton number.
- h 4
peU(hé w)

temperature.



M

velocities in the directions x , y , and =z respectively.

= ./ Tw/pe , friction velocity.
velocity at the outer edge of the boundary layer.
*
=UDd .
U /U
spatial coordinates defined in Figure 1.

empirical constant.

molecular diffusivity.

=0y + o , effective diffusivity.

turbulent diffusivity.

= Cp/cv , ratio of specific heats.

approximate boundary layer thickness.
o

= J (peU -5 G)/peU dy , displacement thickness.
)

[ee]

= J (U - a)/U dy , kinematic displacement thickness.
0

difference between value of variable in mainstream and at
wall

= 6/£ , small parameter used in order of magnitude analysis.

*
=y/o .

asymptotic matching point.

= pe/5’ , also used for J‘ o u(l - a/U)/peU dy , the momentum
o

thickness.

x1



Vv

X, X

von Karman constant in the effective viscosity function
(taken here to be 0.41).

molecular viscosity.
molecular kinematic viscosity.

=V + Ve effective kinematic viscosity.

molecular kinematic viscosity at the edge of the viscous
sublayer.

turbulent kinematic viscosity.

molecular kinematic viscosity at the edge of the boundary
layex.

density.

constant in the effective viscosity function (taken here to

be 6.9).
shear stress.

effective viscosity and diffusivity functions in defect
form.

wall and defect effective kinematic viscosity functions.

wall and defect layer variables for the effective kinematic
viscosity function.

previous x station.

outer edge of boundary layer.

xii



()
()

()

homogenous solution.
intermediate x station.
initial x station.
particular solution.
wall.

differentiation with respect to x.

Superscripts

time average part of dependent variable.

fluctuating part of dependent variable, alsc used later
with £ , g and 8 +to denote partial derivative with
respect to 1 .

non-dimensional variables defined by Equation (Al).

xiii



I. INTRODUCTION

It is probable that a quantitative theory of the turbulent trans-
port mechanism which, for example, gives rise to the Reynolds stress in
turbulent boundary layers, will not be available in the near future. One
is therefore forced to model this mechanism empirically. Most of the previous
methods in the literature inject further empirical content in an attempt to
side-step the analytical complexitiles of the time averaged equations of motion.
However, with the availability of high speed computers the full equations can
now be solved numerically, thus providing a predictive tool which spans a
large parametric range. The parametric variables which can in principle be
inciuded in the formulation are, Reynolds number, Mach number, pressure gradi-
ent, transpiration or aspiration, heat transfer and wall roughness for either
planar or axisymmetric flow. IFurthermore the same numerical program can be
used to calculate the laminar portions of the boundary layer development.
Besides serving as an effective tool for the prediction of boundary layer
development, the numerical solution of the boundary layer equations is free
from analytical approximation and therefore underscores the results of the
turbulent transport model.

The seed of the present work was Clauser's suggestion [1,2] that
the outermost part of an equlllbrlum boundary layer (one for which (U-u) /ﬁ
represent similar profiles when (6 dp/dx)/T is held constant) could be
described with a constant effective viscosity. Recently Mellor [3,41
hypothesized an effective viscosity function for the entire boundary layer.
This effective viscosity hypothesis successfully predicted the whole range
(-0.5 < (&% dp/dx)/Tw < w) of equilibrium boundary layers which represented

a considerable gain since it allowed the detailed development of such layers
to be calculated from a function containing only three empirical numbers.
Mellor then demonstrated that the effective viscosity hypothesis gave good
results for a variety of decelerating non-equilibrium flows in reference (51
There the profiles, skin friction coefficient and boundary layer growth were
all predicted well and, where it occurred, the separation point was correctly
predicted. The limitations on the hypothesis are that it has a definite lower

Reynolds number limit of R6* = 700 , with a practical lower limit somewhat

higher, and it is in error for boundary layers on walls with curvature in the
streamwise direction. The latter does not represent an inadequacy in the
basic approach. Experiments are still in progress to find the best way of
incorporating the curvature effect into the hypothesis.

The next logical step in the development is taken here - the
extension of the incompressible effective viscosity to include compress-
ible flows with heat transfer. The restrictions on the hypothesis for incom-
pressible flow also apply in compressible flow. Here the Reynolds number
restriction must be made more specific; U5§/V; must be greater than 700,



* oo -
where 5, = j:)(U—u)/Udy > and vy is the kinematic viscosity at the edge of

the viscous sublayer. For large Mach number v can be substantially larger

than the freestream value. The density variation in compressible flow also
makes the effect of curvature even more significant. Both of these limita-
tions will be discussed later in detail. In addition, a restriction to mod-
erate heat transfer rate becomes necessary. This condition can probably be
written
n° / n
1 - ——— = o(1) (1)
1+ =L M2
2 e

which if satisfied 1mplies that only the mean density need enter into the
determination of the Reynolds stress, and the previously established effective

viscosity hypothesis may be adopted.

By assuming constant turbulent and molecular Prandtl numbers, the
same effective viscosity function is used in the energy equation. Because
the energy equation is actually solved, instead of simply assuming, for in-
stance, constant total enthalpy across the layer, compressible boundary layers
with heat transfer can be calculated.

Although the predictive scope of the calculation is much broader,
this report restricts atiention to a large amount of high speed adiabatic
flow data with zero pressure gradient, a series of axisymmetric flow data
with pressure gradients and some incompressible flow data with heat transfer.

I1T. ANALYSIS OF THE PROBLEM

Equations of Motion

Solutions of the complete, time dependent equations of motion Cor
a compressible turbulent boundary layer are beyond the capability of avail-
able numerical methods. A number of simplifications are therefore necessary.
First, using the familiar method of Reynolds averaging, the equations may be
averaged in time so that the effects of the time dependent turbulent fluctu-
ations are expressed as turbulent correlations. In a steady turbulent flow
these correlations are then independent of time. Temporarily it will simplify
matters to restrict the derivation to include only that region away from the
wall where turbulent effects dominate and the direct effects of molecular
viscosity and molecular conductivity are negligible. Using the notation shown
in Figure 1, these equations may be written



d ,——  —7r— 9 ,——=  —r—
5 (Pu+pu’) + 5;:(p'v +pv)=0 |, (2a)
2 —_
3 —— - - — e
gz(pu +pu’2+2up'u’)+§—y(pvu+pu’v’+up’v’+Vp’u’)=—g—§ s
(2b)
. 2
O DTy ST LT ST ey + 2 (5T 45 B 4 o ST op
aX(puv+puv +vpu+upv)+ay(pv +pv2+2va)_-ay ,
(2¢)
d ,——— ——557 . - d ,———% - -
S (p up®+ p ul? + R ol ru ) + Sy (pvy® +p h?’v' + v p'p°’
o
+ h p’y’) =0 s
° =h + i(_.2 + 242 2) ()
h™ = z\u u v W ’ (2e)
- -1 ,—= —7T? .
p=1L (pbh+p'n) (2f)

Since these turbulent correlation terms are not known a priori, it
is desirable to estimate their importance to determine which are negligible.
For a boundary layer this may be done with a standard order of magnitude anal-
ysis. If it is assumed that

T~ u iyl (2228
dy' oy

o’ ) (3a)

and

pl.u-lzpl_v.l (3b)

(which is consistent with equations (7) and (13)discussed below) it is
shown in Appendix A that

p'v p'u
= E = -0 Y L
Uap ° Uap (8/2) ()
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FIGURE 1.

Illustration of coordinate system,



(where AE is the variation of ; across the boundary layer and p 1is the
thickness of layer which is small with respect to the scale in the x di-
rection, £ ) so long as

0 % /%
;—:l———'7~—l'§=0(l) (5)
e 1+ =M

2 e

Presumably at some high heat transfer rate the condition will be wviolated.
However, in flow regimes where (5) is valid, many of the correlation terms
in equation (2) are shown to be negiigible. The resulting equations can
then be written in the form

dpu . D ,m=  ——

—ap¥u-+a—y(pv+p’v’)=0 s (6a)

- - du - —— du dp . dt

pu$+(ov+pV)g“=-g&‘+‘:} ) (6v)

. _O- P Ilah_o a - —

pua—x+(DV+pV)ay=5;(q+UT) s (6c)

. _ -2

B =h+ (64)

— _l.—_

pe=77 on (6e)
where

- —-3du -

T=ua—;'-pu’v’ s (6éf)
and

— =3 - —

q=ka—y--pv’h . (6g)

Molecular viscous stresses and heat flux terms have been added to the equations
above to make them valid to the wall. In doing so the terms (p’ (Qu‘/dy) ,



(k73n’/dy) have been neglected relative to p(du/fdy) , k(dn/dy) which are
themselves small everywhere but near the wall.

Effective Viscosity Hypothesis

The influence of turbulence appears in the boundary layer equations
(6a.),(6b) & (6c) through the terms p’v’ , u’v’ and v’h’ . However, only
57;7- and ;757. need be considered since p ‘v’ always occurs in the combined
form, BF + p v’ , which may be eliminated from (6b)and(6c) with the continu-
ity equation. Therefore, in order to complete equations(6b) and(6c) the

quantities u’v’ and v’‘h’ nmust be related to the mean flow variables.

Since the necessary understanding of the turbulent mechanism which gives rise

to these terms is not likely to be avallable soon, a single concise empirical

assumption is the next best alternative. Following the line of argument used

by Mellor [3,4,57 for incompressible flow, an empirical relation will be pro-

posed for the terms u‘v’ and v’‘h’ in compressible flow with heat transfer.

The empirical relation for uw’v’ is couched in the form

=;.a_u_ulvl:.v a_u , (7)

oy

ol

where Vo 1s an effective kinematic viscosity of the type first proposed by
Boussinesq. A kinematic viscosity i1s chosen because of the essentially kine-

matic nature of the velocity correlation, u’'v’ . The hypothesis for the form
of Ve rests on three assumptions which are supposed to be universally valid:

1) in the outer, or defect layer, Ve depends on only three quantities,

* 3% * o= :
8, U, y and 55 7 where SkIJ(ZJo( U-U)dy) is the scale suggested by Clauser
[ 2 7; 2) in the inner, or wall layer, Ve also depends on only three quan-

tities, v , y and ou , Where v is the local molecular viscosity; and

Sy
3) in this two layer model there is a region where the layers overlap and both
expressions for Ve apply simultaneously. It follows from the first two as-

sumptions that in the defect layer, Ve must be of the form

u (8a)

*
k k

4}
|
"
e
X
e



and in the wall layer, ve mist be of the form

<
no
N

$-o B o)

where K 1is an empirical constant. Thus the hypothesis consists of two
forms each individually independent of the Reynolds number, Mach number and
pressure gradient. Now, as a consequence of the third assumption, it follows
that the form of the effective viscosity in the overlap region must be,

—q)—*
v =ve =510 . (9)

Thus in the overlap region ¢ and & must be linear functions so that

v =Ky 5;' . (:LO)

This is a result identical to that obtained heuristically by Prandtl [6].
Here, however, it evolves as a consequence of the independence of the func-
tional forms for the wall layer and the defect layer. Iastly, for the hy-
pothesis to predict correctly a viscous sublayer it is clear that very close
to the wall, ¢ —~ 1 .

An alternative functional form, completely equivalent to (8)
but offering some computational advantage was later offered by Mellor [5]); it
may be written

v -
< _ kY JTo.
% - o(X) s X == = in the defect layer

k k (11a)

<
it
<2
m

T; = 4(X) , X ; in the wall layer

(11b)

Any function in the form of (8a,b) may be transformed to (1lla,b) with help
of the relation du/fdy = (?/5)/ve .



*
As before, in the overlap layer, we must have ve = V¢ = U§k® =

Ky(?/ﬁ)l/2 or equivalently ¢ =X and & = X . Specific functions may be
determined by comparison of calculated profiles with constant pressure, in-
compressible velocity profiles and are shown in Figure 2a,b . The specific
curve fit for ¢(X) given in Figure 2b 1is simpler in form to that previ-
ously cited in [ 5 ] but is operationally equivalent. The value

Kk = .41 1is the von Karman constant and is chosen to predict correctly the
experimentally observed logarithmic law of the wall (when 7 =‘TW) . The
constant ¢ = 6.9 is chosen to give a best fit to Iaufer's data [7J]-din the
viscous sublayer in the manner demonstrated in [ 4 7 . The outer profile
@(X) was specified so as to conform to Clauser's suggestion that ¢ = constant
= K in the outer layer. Obviously this representation is not correct near
the outer edge of the profile and could be replaced by another function @(X)
which decreases for large y . However, experience indicates that this

would only slightly alter the predicted profile shape.

Finally, it is clear now that relations (1la,b)are a proposal of
empirical inner and outer functions for v, even though knowledge of a dif-
ferential equation for Ve is absent. Therefore a composite function can
be constructed using a prescription offered by Van Dyke 81 for combining
inner and outer functions (the prescriptlon can be expressed as the sum of
the inner and outer functions minus their common asymptote). Thus v, can
be written for the whole layer as

<

X
= = o(%) + Re(Z) - X , (12a)
v ~ R
or
Ve 1
— = ¢@®X) +o(x) -x (12v)
BkU ~
*
Uék
where R = = - Some illustrative examples of (12a,b) in incompressible flow

for several values of R , are shown in Fig. 3 . For compressible flow,
the results are conceptually the same but are complicated by the molecular

viscosity variation in R and X .

It is evident that(128)or(1Zb)can only be valid for large Reynolds num-
ber. In fact, for R s < 700 +the overlap layer disappears. Here the notation



a) outer layer

D) inner layer

FIGURE 2. Effective viscosity hypothesis.
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FIGURE 3. Illustrations of the composite effective viscosity

function for an incompressible flow.



B

layer. From experience 1t is apparent that, so long as R s > 2500 , very

is used to designate the valve of R at the edge of the laminar sub-

little error due to low Reynolds number effects is evident.

The additional complication in compressible form of the hypothesis
compared to the incompressible form is that VvV , as it appears in (122) and in
the definition of R and X , d1s not a constant. Therefore v will be eval-
uated according to the thermodynamic property relations between v =‘% and

the local mean temperature and pressure. The importance of this consideration
1s restricted to the viscous sublayer but 1s nevertheless necessary to accu-
rate predictions in the case of high Mach numbers where 7V In the viscous %
sublayer may be much larger than v, . One effect is that a large Ré(: g%_)
Us¥ o
may correspond to a much smaller RS(== ﬁ%E) as determined locally in the
~ s

viscous sublayer. It seems that, for the data to be considered here, the dif-
ficulty is frequently encountered in high Mach number flow and some considera-
tion will be given to a tentative correction.

The underlying assumption that has been made both in this and most
other effective viscosity hypotheses is that the Reynolds stress, uv’ , 1s
completely determined by the local mean flow variables. Undoubtedly this is
not always the case. The history of the turbulence will probably be impor-
tant in boundary layers which change rapidly over short distances. In view
of this Bradshaw, Ferriss and Atwell [ 9] have proposed to calculate u‘v’
from the equation governing turbulent energy transport using several empirical
functions relating the quantities in the equation. Although 1Lt is an inter-
esting approach, we have difficulty in understanding the conceptual basis of
some of their assumptions. Furthermore, the nature of the calculation xre-
stricts prediction to regions outside of the viscous sublayer, and the numer-
ical scheme can not be applied to laminar flows.

The other assumptions which have been made all epply to the form-
ulation itself. Pirst, there is the assumption of a two layer model. 1In
this, each layer, represented by the effective viscosities(lla)and(1lb), has
its own scale, 6kU and Vv respectively. Although there have been attempts

to formulate the effective viscosity according to a one layer model, (van Driest,
[101), it has been generally acknowledged (Townsend, [117] ) that two scales

are necessary. The assumption of an overlap layer where both formulations
apply has received strong experimental support. This fact was used by Millikan
127 ) to infer the velocity profile in that region.

Appendix B compares the present hypotheslis with others that have
appeared in the literature.

11



Heat Transfer

The other quantity which must be specified is v/’ . In order to
do this, the assumption is made, following Reynolds, that the heat flux can
be written as

€=504 S ’ (13)

where Ot is the effective heat diffusivity. A relation between Q, and
v, can be established with the usual assumption of a turbulent Prandtl num-

ber, Pr_ . Since (v, - v) and (o, - &) are the turbulent (or eddy) viscosity

t
and diffusivity respectively, then a turbulent Prandtl number Prt may be

defined by analogy to a molecular Prandtl uumber Pr . Thus
v
Pr == 14
= (1k)

and

Pr, = ——— (15)

a :—l’—l—i‘(v —;) (16)

In the most general case the turbulent Prandtl number could be a function of
local variables. However, in the calculations described in Section IV , the
usual assumption of constant turbulent Prandtl number was made.

ITI. SOLUTION OF THE EQUATIONS OF MOTION
The steady two-~dimensional flow in a boundary layer on a plane

surface at moderate Mach number and heat transfer rate, from the preceding
analysis, is characterized by the equations

1z



+ a—% (pv +p/v’) =0 s (17a)

R g— dp 3T
pua—§+(pv+p’v’)a—§=-£+$ , (17p)
-~-an° ~= — 23n° - ==
pua—;+(pv+p'v')a—y—=5%(q+u'r) s (17e)
p="2=58 (17a)
— =2

h0=h+%—— . (17e)

From equations (7) and (13) the effective shear stress and heat flux are

- - ou
_ _ 17F
T =P, 55 s (17f)
and
- - dh
— e 1
a=ea, Sy . (17g)

The effective viscosity, from equations (11)and (12), is

- *
vy =V (X R) + UB, [@(X) - x] (18a)
K T
X = —% Ny (18v)
Us,

and
us, /v (18¢)

pi=t.
Il
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and from equation (16) the effective conductivity is

The Sutherland molecular viscosity relation,

,5E (hgmp)+1uf
/

o
v\
[o5]

m'trlpdl

(E/cp) + 110°

is used to evaluate Vv in equations(18a) and(18d) .

ate boundary conditions are

W (ysx) =u(y)

u (0,x) =0 s

v (0,x) =0 P

Li 'y{: U -puly) |ay’ U
im - pu =

Lin | e - e uly J Y= e,

) )

b (yx ) =h (v) )

no,x)=h(x) , or a(o,x) =q(x)

o]

Yoo

=== 0, &7 . .
LimJ pu[he—h (y)de is bounded.

(he/cP in °Kelvin)

J

(18a)

(19)

Finally the appropri-

(20a)

(20b)

(20c)

(204d)

(20e)

(20f)

(20g)



. . - o]
The integral boundary conditions on u and h are more restrictive than
the usual,

Lim u(y,x) =U (21a)
and
. @) o
%Eﬂ; h{y,x) = h_ . (21b)

As noted by Hartree, the conditions, (21), admit two types of solution for
large vy

— 2
U(x) - u(y,x) and h - nh (y,x) ~e 4 , (22a)
and
- o .o -a
U(x) - w(y,x) and he - h(y,x) ~y , (0<a) .

(22b)
The second of these forms predicts infinite displacement, momentum and en-
thalpy thicknesses and therefore is not a valid sclution. The integral

boundary condition specifically avoids this and allows only the form (22z) .

It is convenient to introduce the following definitions:

‘ peU -SE
f'(n,x) = (23a)
p U
[S]
o)
e
e X) = =
h: - h
Z,
g(n,x) = — ; (23e)
h -h
e r

15



n= /s . (234)

. . - / .
Although frequently it woald be more uscful to have £ be a function of
. - . - . . o e / q .
velocity only, the strea Iuaciviocn-like form of £  above makes incorpora-
tion of the continuity equatiocon much simpler. An arbivrary reference en-

thalpy, h,, , 1s used, and can ve defined in any way which is convenient to
a particular problem. For example, we could set hr =0 or in the case

of low Mach number it is often convenient to set hr = hw at some reference

wall location. Finally, the use or the normalized variable 1 largely di-

vorces the chanpge in tnickness of the boundary layer, represented b FS)
2 % Pl

from the change in shape, represented by f;(ﬁ) and g;ﬂn) . Tt is there-
fore possible to ure a fixed distribution of n grid points in the numer-~

ical calculation rather than one in which the spacing grows with the thick-
ness of the boundary layer.

Substitution of these parameters into equations (17b) and (17c)

yields
/
% / f
Bk'r A | A ® p
g;.e_ @(1_1-_} =<Q’Q<ﬂ-;)-69;x by
\
( )
/ * N /. . PR e _ \ v
+ iow+ws%d £ —2>+5 @fx—ef%/+Qe\n f/}¢
+{ Q8" ) £+ V(G—l/—5<c -of v T - Qo0
(2k4e)
\
(/ N/
% ( 12 B ~ /
‘ 1=
6kTh " 2 Me .T 2 1\2
= Rl | A
5 H(l+%Me) Lh
*D 4 :\ ’
= Q(n—f)-&xx g -0 r-1T )8 (2kp)
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The density ratio is found from equations (17d4) and (1Te),

y-1 2 A
o 2(1 * 5 Me> (1 - He') (25)
ved i B e 0P e TR (1 - )

Primes indicate differentation with respect to 71 and,

*
(p, U5 )
_ —-——-—-—-———x 7~
Q - o U F) (208.)
e
U 5
v =2 , (26b)
hZ - h
P, (26c)
h
e

From (12b) and (16) the effective viscosity and conductivity are

1%
e 1
1= =7 ®RX) +o(X) -X ; (272)
5 U ~
k
- Oy I SO (T 1\ ( )
= — = - = . 27b
5 U R Pr Prt g&)
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Here, since the effective viscosity and conductivity have been expressed in
terms of the defect variables throughout the layer, R must appear explic-
itly in the wall layer parts of both formulations. The boundary conditions

are

fl(Tl;XO) = f;(ﬂ) ) (283)
f(O:X) =0 5 (28b)
T ’(O;X) =1 s (280)
Iyingo £(n,x) =1 s (28a)
g(nx ) =g () (28e)
n° - n (x) 6* a (%)
1] e W " W

o) = =——"—  or  &'o,x) = - - ,

h -h o v{(h -h)

e T wow e by
(28f)
§Eﬁ; g(n,x) is bounded. (28¢)

These partial differential equations are parabolic in the x

direction and are therefore well suited to conversion to ordinary differ-
ential equations in 7 by replacement of the x derivatives w.ith finite
differences. This is done according to a scheme used successfully by
Mellor [ 5 ] . The x derivatives of the functions, ! , g4 and

6*

are written as



; b
fx= ——_—AX s (29a)
L’ -h'
1
8y =™ T Ax ’ (29b)
* *
* 5 - 6b
B = TRR s (29¢)
nE =X - X 5 (294)

where f,é 5 g{) , etc. are the known profiles and £ R g/ , etc.

are the profiles to be calculated. f; and g' clearly best approximate
X

the derivative of f' and gl at X the midpoint between X, and x .

This can be used to advantage by defining the average values of the vari-
ables between Xy and x as

£i= (g + 1) , (30a)
g = (e +&) , (30b)
6. = e +5) (30¢)
M, = (M +M) , ete. (304)
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and then rewriting equations (2ka), (24b) and (25) in terms of them.
These equations are

/
* _’\
% T \ \
/ \ _ - Y4
2] 6m<l B fm /J =8 e Qm(ﬂ fm/ fm
8 m
I * N/ 3\ N 5;1 h
5 PN X ( _ __m ( et .
+\L<V9m+ max/\fm /+Q' mn fm/ Axe - fm/ fm
B-k \__1/ M
‘ m P
+ Q.9m+&[@m<1-fm/_j £
\ o e N Y
_ 8 _ 7 _in_ - / N _ _ /
+{ vV <9m 1)+ ‘e Q1 9m+mtem\1 fm/fb \am(l i )}fb
(31a)
/
7-1 2 i | /

5 =

k Thm " 2 Mem Tm 2 1\2
— = -8 + = - 1}|6 (l - T
6* 6 m y-1 2 \|T, m m/

m H<l+——M ) l_
L 2 “em /

* * )
Bm / A 5m N |
{ LAY
- —_— - } —_— - \ 1b
ax I Byt LAx <l T8 ; (31p)



7-1 2\ 7
2\1 + /&5 M l - He
em - : AN_( 2 m} ( 11l (3lc)

7-1 2 ne 7-1 2 ’
l+A/71+ > Mem(l-fm) (1 + 5 Mem) (1-Hgm)

0y =2 "% ; (314)

Qm= 0 U AX ) (313)
m m

v o= W—— s (31f)
n_ = ;‘g : (31)
m

The equations above are a set of ordinary differential equations involving

.

only the variables fm 5 gn: , etc. to be calculated and the known profiles,
fb' R gb' , etc. Once fm' and gH: have been obtained, the proflles at x ,

the position of interest, are simply

£n) =2 £(n) - £(n) s (32a)
g(n) =2¢ln) - gln) p (32b)
5 =2 5: - a: , ete. (320)_
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A problem is encountered when using the finite difference method
described above. TIf, for some reason,the known profile at x, 1is not accu-

rate, this inaccuracy is passed on with small attenuation to succeeding pro-
files. This situation results from the fact that near the wall the profiles
adjust very quickly to local conditions. Therefore instead of approaching
the correct profile more slowly as the outer layer does, the layer near the
wall will immediately assume the correct values for the midpoint at each step
in x . If the profile at x, is incorrect, it will be projected through
the correct midpoint profile with equation (32a) to an equally incorrect pro-
file at position x . Besides producing profiles which are incorrect near
the wall, this overshoot causes oscillating skin friction and heat transfer
coefficients. An alternative to the method above is the backward difference
method which, although the x derivatives are less accurate, is free of this
overshoot. There the equations would be solved in the form (24a) and (24b)
and the x derivatives would be approximated by

f == (33a)

g =—-—— , etec. (33p)

However, by combining the two difference methods, the overshoot, when it
occurs, can be greatly reduced and yet sufficient accuracy can be maintained.
This is accomplished by calculating the intermediate profile somewhere be-
tween (x - xb)/E and x according to the relation

X -
’ ’ 1] A m xb\\
seg (@ - () (3ha)
X - X
7 I3 V4 1\, m b\
e T & + (g Y < X - xb/ , ete. (3kp)

In places where the boundary conditions change rapidly and overshoot is



likely, x, can be made closer to x ; in places where overshoot is unlikely,
x, can be closer to (x - xb)/2 for accuracy. Also,using this method with
X~ set close to x , poor guesses for the initial profiles fé(n) and g;(n)

will still result in acceptable profiles several x positions downstream.

Another device was found to be convenient in connection with initial
profiles. In many boundary layer calculations initial velocity and enthalpy
profiles are not known. FEven when comparing calculations with established
data, as in Section IV , initial profiles are not completely specified. This
is true, for instance, in the sensitive region near the wall. What is known
are the conditions of pressure gradient and heat transfer under which the
layer developed and the Reynolds number and displacement thickness at the x
position where the calculation is to begin. The initial profiles were there-
fore produced by recalculating the input profile with several simplifying
assumptions. It was assumed that the pressure gradient was produced by a
velocity distribution of the form

£, uw) =, (35)

o=
Il
N

*
and that the growth of 8 was linear

*

So(z) e

which gives the result that

N
U8 <p Us )
e 2
= AB end Q= ————>—=A{1+ B(1 - M) (37)
Pe U [ e ]

are independent of x . Finally the profiles £’ and g' are assumed to

be unchanging with x . The momentum and energy equations then become simple
ordinary differential equaticns in n to be solved for £’ and g’. The
resulting profiles were satisfactory even though the Reynolds number was not
allowed to change from profile to profile and therefore the skin friction
coefficient and Stanton number are not exact. Then, since there was a slight

23



*
discontinuity in values like Cf and B between the reset profile and

the first profile moving forward, it was found best to allow space to cal-
culate profiles at two or three stations before the initial station.

The solution of the ordinary differential equations (31a) and (31b)
was carried out iteratively. The succession of calculations in a single
iteration was as follows. The momentum equation (31la) was solved for fé P

4

; *
fm and 6m . Then the parameters Q and V  were recalculated based
on the new 6; . The energy equation was solved next for hé and h& and
then 65, was determined from equation (3le). ¥Finally the effective viscosity

and conductivity were calculated from (27a)and (27Tblusing the variables at
X . This method proved very satisfactory. The solution of the energy equa-

tion followed the iterations of the momentum very well. Therefore it was
unnecessary to have an internal iteration loop for the energy equation to
assure its convergence as did Smith and Clutter [137 . Speed of convergence
for the whole loop varied, but no cases required more than seven iterations
and in simple cases two iterations were sufficient.

A fourth degree Runge-Kutta method was used to solve equations (3la)
' ‘
and (31b) . In order to use this method the f and g’ equations were
written in pseudo-linear form

cln) [£7 + o (n) | ) =cn) £+ o) £/ +oy(n) £+ 0, (38)

where the coefficients are the quantities in brackets in equations (31a,b)
These coefficients were evaluated from the solution obtained from the pre-
vious iteration. The Runge-Kutta equations for the solution of (38) are

given in Appendix C.

The calculation of each equation was begun from the wall with the
specification of two boundary conditions as given by (28) . The outer bound-
ary conditions on (3la) and (31b) were met with the use of an asymptotic solu-
tion for large 17 which assured the correct exponential behavior as shown in
equation (22a). The derivation of the asymptotic solution is performed with
the additional simplifying assumption that the turbulent Prandtl number is
unity (see Appendix D ). For compressible flow with heat transfer the asymp-
totic forms of £’ and g' can be expressed in terms of fl and g' at
point Th , far out in the layer,
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(nl - 1\/-2- (n - 1)2

f'(T],x) =7 I( nl’x) exp QI‘(X) ] (398')
, , (n -2)f-(a-2)
g (T],X) =g (nl’x) exp 21‘()() > (39b)
Pe U 6* 2 5*
e o x
r(x) = —0—9—3 w(x ) + ———KT-Q- J —E (peU)EB*dx (40)
P UB (peua ) %5 0

The numerical solutions were matched to the asymptotic solution by exploi-
ting the effective linearity of equations (31la) and (31b) . Both homoge-
neous and particular solutions were obtained for each equation. The solu-
tion of the homogeneous equation was added to the particular solution in the
proportion to make the numerical solution Jjoin the analytical solution at
M4 In this manner the third inner boundary condition which had been

guessed to perform the integration was reset to the proper value afterwards.
This was done according to the equations

£ =fp’+Af fh’ s (4la)

- / 4
g =g, * Ag 8y y ete. (41b)

The constants Af and Ah are obtained using the derivatives of equations

(392) and (39b) , evaluated at the matching point N,

<”1 - 1\)

£n)) = - ——/— 1)) ) (L2a)
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g () = - —— &ln)) . (L42b)

Therefore Af and A_g are given by

<n1 ] l>

£(n,) + —£(n,)
A, =~ P21 = N p_1 ’ ()"'33)
(v -2)

fﬁ(nl) — 5 ()

+

+

4

Lo (-
f - 8p(ﬂl) Z—r——; gp(ﬂl) (3v)
-1
'nl—r— 8pl(nl)

+

Y
g,(n;)

The method of calculation from an operational viewpoint is as
follows. First, profiles of £’ and g' are read in to the program as
functions of 1 . These profiles correspond to the first x position,
X =X, , say. If these profiles are complete and satisfactory as they

stand, they are used unaltered. If, on the other hand, they are not the
desired initial profiles, approximate initial profiles are calculated for
the required initial Mach number, Reynolds number, displacement thickness,
lateral wall curvature, and heat transfer rate or wall temperature. IT
the £’ and g/ profiles are to be recalculated, the inpul profiles are

used as initial guesses.

Next the values of the mainstream Mach number and wall heat flux
or temperature are read in corresponding to the discrete values of x at
which profiles are to be calculated. Also read in for each x 1is a number
between 0.5 and 1.0 which indicates the position in the interval between
x values where the actual calculation of the profile is to take place.
Then the profiles and parameters for each succeeding x position are cal-
culated and reported until the last x position has been reached.
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IV. COMPARISON WITH EXPERTMENTAT DATA

Zero Pressure Gradient

A wide wvariety of experimental velocity profiles measured in
constant pressure adiabatic flows are available. C(Calculations were per-
formed for a few of these profiles representing a range of Mach number
from 2 up to 4.5. No data at lower Mach numbers are compared because
there are few experiments in the transonic region. This is the result
of experimental difficulties not related to the development of the bound-~
ary layer itself. PFurthermore, the boundary layer in the subsonic and
transonic range differs only slightly from the incompressible boundary
layer, as is evident from Figure 10.

Calculations, for the flows consldered, were begun by genera-
ting an initial constant pressure profile internally as described in Sec-
tion ITTI. Then, starting at a Reynolds number somewhat below that of the
data profile, the calculation proceeded until the data Reynolds number was
reached. These profiles were calculated two ways, once with the assump-
tion h%(y) = hQ (or g n) = 0), and once using the full energy equation

with Pr = .78 and Prt = 1.0. The results were identical within the ac-

curacy of the graphs. Experimental profiles were chosen which had values
*
] k
and Vg is the local molecular viscosity at the edge of the laminar sub-

*
of Uﬁk/vs above 2500, where J is the kinematic displacement thickness

layer. As explained in Section II thils criterion assures that the hypoth-
esis is well within its range of validity. The calculations and experi-
ments are compared in Figures 4 through 9 . It is clear from the figures
that the prediction of the velocity profiles and skin friction coefficilents
is remarkably good.

Further comparilison with established results was provided by cal-
culating the skin friction coefficient for constant pressure adiabatic flows
over a range of Mach number. The calculations were carried out as described
for the profiles above. Initial profiles were generated and then allowed to
develop until a high enough Rg had been reached. Then, for R9 of 2000
and 7000, the skin friction was normalized by the corresponding, incompress-
ible skin friction. Above M, =~ 1 , in the R9 = 2000 case, the Reynolds
number ’BS(= USE/Vé) was below 2500; therefore that curve was not continued.
Above Rg = TO00, there was no discernable change of the calculated values of
Cf/Cf with Ry . The results of these calculations are compared with ex-

perimental skin friction coefficients from Kuethe [ 20 ] in Figure 10.
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FIGURE L. Comparison between a velocity profile measured by
Coles [14] on a flat plate at M, = 1.98, and the

calculated profile shown with an unbroken line.
The experimental skin frietion, which was measured
with a floating surface element, is also compared
with the calculated velue.



FIGURE 5.

Ctoy0-00166,  Cg

1he.=0'00|70

Comparison between a velocity profile measured by
Coles [14] on a flat plate at M, = 2.58, and the

calculated profile shown with an unbroken line.
The experimental skin friction, which was measured
with a floating surface element, is also compared
with the calculated wvalue.
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FIGURE 6.

30

Coxp 000138, Cg, =0.00145

2 ~

Comparison between a velocity profile measured by
Coles [14] on a flat plate at Me = 3.70, and the

calculated profile shown with an unbroken line.
The experimental skin friction, which was measured
with a floating surface element, is also compared
with the calculated value.
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FIGURE 7.

Comparison between a veloclty profile measured by
Coles [14] on & flat plate at M,e = 4.55, and the

calculated profile shown with an unbroken line.
The experimental skin friction, which was measured
with a floating surface element, is also compared
with the calculated value.
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FIGURE 8. Comparison between a velocity profile measured by

Nothwang [15] with a pitot tube on a flat plate at
Mé = 3.03, and the calculated profile shown with an

unbroken line.
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FIGURE 9. Comparison between a very high Reynolds number
velocity profile measured by Moore and Harkness [16]
on & tunnel wall at M, = 2.67, and the calculated

profile shown with an unbroken line.
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FIGURE 10.

Comparison between experimental skin friction mea-
surements obtained by a number of investigators
(after Kuethe [20]), and the calculated skin fric-

tion. Cf/Cf is the ratio of compressible skin
i

friction coefficient to incompressible skin fric-

tion coefficient at the same value of R@ = 2000,

and one for RG greater than TOO0. The calcula-
tion for Re = 2000 does not extend beyond Mé =1

because of the Reynolds number limitation on the
effective viscosity hypothesis.

Lobb, Winkler and Persh [18]



Again the comparison with the data is favorable.

Having seen the degree of success achieved by the effective vis-
cosity assumption in cases where Es is high enough, it is valuable to study

the nature of the error incurred for small values. Some examples of this are
shown in Pigures 11 through 16 . Figure 1l illustrates this especially well.
Beginning with the first profile, for which the calculated value of R is

1,260, a progressive improvement in the theoretical prediction is evident up
to the last profile for which EAS is 2,440. However, although the shape

of the profile is not too good for low Rs the growth of 6* is quite ac-
curate as is also shown in Figure 11 . The calculation of this series was
begun by generating a constant pressure profile internally at the appropriate
Mach number. Because of the slight discontinuilty in skin friction and other
parameters after the generated profile, which was mentioned in Section III,
this profile was calculated for approximate values of ¥ and Rﬁ* at xo

somewhat upstream of the first profile measurement at x = 5.95 . Trial
calculations were made from X5 Uup to x = 5.95 so that 5* and Rg

matched the experimental values at x = 5.95.

*
The importance of considering R g(= Uék/vé) rather than the ex-~
ternal Reynolds number Ra* (= UB*/gn) is brought out in Figure 12 , where

Rg* would be sufficiently high if the Mach number were low. However, the
Mach number is high, making B;é too low and therefore the theoretical pre-
diction is poor. Figures 13 through 16 also exhibit the same effect for a
range of Mach numbers. At the beginning of each series the prediction is
poor and, although it improves slightly as the layers develop and R g in-
creases, the Reynolds number is still not high enough at the end of each
series,especially in the higher Mach number cases. 1In spite of this, it is
interesting to note that the growth of @ d1is predicted accurately. For the
calculation of the sets of profiles shown in Figures 13 through 16,as in
Figure 11 , both 6* and Ra* matched the experimental values at the in-
itial x station according to the procedure described above.

Because of the variation of v across the layer, boundary layers
with low values of R . occur in practice much more frequently in compress-

ible flows than in incompressible flows. It would be useful to modify the

35



36

0061

0041
S (in)
0021

5
Mo=2 43
14
R..= 7800 at X =5.95
5 Yix
dp _
dx =00 13
12
X=1395(in) 14
t + + + 0
04 ., 02 00

000

FIGURE 11.

Comparison between a series of velocity profiles
measured by Monaghan and Johnson [217] on the flat

wall of a tunnel, and the calculated profiles.

Profiles calculated using K = 0.016 in the effective
viscosity function are shown with unbroken lines, o
and profiles calculated using K = 0.016 [1 + (1100455) ]

aie shown with dashed lines. The measured growth of

d with X is compared with the calculated growth
illustrated with an unbroken line. The calculated
growth of 5% for both values of K are indistinguishable.
The initial and final values of Bdsare also given.



FIGURE 12.

Comparison between a velocity profile measured by
Lobb, Winkler and Persh [18] on a flat tunnel wall,
and calculated profiles. The profile calculated
using K = 0.016 in the effective viscosity function
is shown with an unbroken line and the profile
calculated using K = 0.016 [1 + (1100/55)2] is shown

* —
with a dashed line. The value of RS( =U6k/vs) for
this profile is 1050.
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FIGURE 13.

Comparison between a series of velocity profiles,
measured by Michel [22] on a cylindrical model
whose radius was large with respect to the bound-
ary layer thickness, and the calculated profiles.
Profiles calculated using X = 0.016 in the effec-
tive viscosity function are shown with unbroken
lines and profiles calculated using K = 0.016X
[1+ (1100455)2] are shown with dashed lines.

The measured growth of 9 with x is compared with
the calculated growth illustrated with an unbro-
ken line. The calculated growth of 6 for both
values of K are indistinguishable. The initial
and final values of’BS are also given.
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FIGURE 1k4. Comparison between a series of velocity profiles,
measured by Michel [227] on a cylindrical model
whose radius was large with respect to the bound-
ary layer thickness, and the calculated profiles.
Profiles calculated using K = 0.016 in the effec-
tive viscosity function are shown with unbroken
lines and profiles calculated using K = 0.016 X
1+ (1100455)2] are shown with dashed lines.

The measured growth of 9 with X is compared with
the calculated growth illustrated with an unbro-
ken line. The calculated growth of @ for both
values of K are indistinguishable. The initial
and final values of Bg are also given.
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Comparison between a series of wvelocity profiles,
measured by Michel [22] on a cylindrical model
whose radius was large with respect to the bound-
ary layer thickness, and the calculated profiles.
Profiles calculated using K = 0.016 in the effec-
tive viscosity function are shown with unbroken
lines and profiles calculated using K = 0.016X
[1 + (1100/35\)2] are shown with dashed lines.

The measured growth of 9 with x 1s compared with
the calculated growth illustrated with an unbro-
ken line. The calculated growth of 9 for both
values of K are indistinguishable. The initial
and final values of’Bs are also given.
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Comperison between a series of wvelocity profiles,
meesured by Michel [22] on a cylindrical model
whose radlus was large with respect to the bound-
ery layer thickness, and the calculated profiles.
Profiles calculated using X = 0.016 in the effec-
tive viscosity function are shown with unbroken
lines and profiles calculated using K = 0.016X
1+ (1100458)2] are shown with dashed lines.

The measured growth of & with is compared with
the calculated growth illustrated with an unbro-
ken line. The calculated growth of 9 for both
values of X are indistinguishable. The initial
and final values of Bs are also given.
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behavior of the effective viscosity to account for this. Accordingly, some
numerical experiments were performed with trial amendments to the effective
viscosity function for low Reynolds numbers. The most successful method
seemed to be to vary K according to the following rule

2
K = .016 |1+ (322 : (L)

~

Then the overlap layer, which ordinarily would have disappeared as the outer
region met the sublayer, is maintained. Although this procedure maintains
the essential overlap layer specified in the third assumption of the hypoth-
esis, the device used is somewhat artificial. The results of this correction
are shown as dashed lines on the velocity profiles where the Reynolds numbers
were too low for the usual effective viscosity. The profiles in all cases
are considerably improved. Of course, this approach is merely exploratory
and the principle conclusion seems to be that it works. Furthermore, it does
not seem to represent a truly systematic extension of the first order hypoth-
esis represented by equation (12).

Axisymetric Flow with a Pressure Gradient

Variable pressure gradient data are also rare, due to the greatly
increased difficulty of carrying out boundary layer investigations in flow
with Mach waves. The pressure gradient experiments performed by Winter,
Smith and Rotta [ 23 1 were chosen for comparison here. These data are com-
plete and carefully taken, but the results include other effects besides
pressure gradients since measurements were taken on a surface of revolution.
The effects, which must be accounted for, include lateral and longitudinal
curvature as well as freestream Mach number variation. Although the Mach
number variation is not excessive, the change in lateral curvature causes
strong convergence and divergence of the stream lines. Furthermore, in some
places the approximation that 6/RLAT << 1 was no longer valid and the

equations of motion had to be written in axisymmetric form (see Appendix E).
The approximation that the boundary layer was perpendicular to the axis of
symmetry was still valid, however, since S/BLONG << 1l .

Boundary layer development was calculated for four series of pro-
files. The approximate Mach number range represented 1s from 0.5 to 3.3 and
the approximate Reynolds number range is from Ua*/v‘30 = 5000 to 45000. The
lowest Mach number flow had only small changes in Mach number, whereas the
Mach number variation in the other flows was more substantial. Calculations

e



o
3 2o
3.01 o
o
©°o
ve | © M g 8 2.799
e -
o
o o] o 000 O O00O0 0o o
© o
20t ° oo
: ° o M o 52.000
o] o O 0000 0000 g o
o
o
©0056 o M =1.398
© 0000000000 O
104
o M o =0.597
] © O0ooO0o0oo0o0 o 0000 00O 0000
0.0 4= - ' —
20 30 40 i 50
X (in)
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FIGURE 18. Comparison between displacement thickness variation
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measured by Winter, Smith and Rotta [23] , and the
calculated variation, shown with an unbroken line.
The circles indicate the experimental values ob-
tained directly from the profiles and the squares
indicate the values calculated with the Von Karman
integral momentum equation beginning with the initial
experimental 8 and the experimental values of C

and 6*/9 . T
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FIGURE 19. Comparison between momentum thickness variation
measured by Winter, Smith and Rotta [23], and the
calculated variation, shown with an unbroken line.
The circles indicate the experimental values ob-
tained directly from the profiles, and the squares
indicate the values calculated with the Von Karman
integral momentum equation beginning with the initial
experimental 6 and the experimental values of C £
and 8*/9 .
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were begun by generating profiles internally under the proper conditions of
pressure gradient and lateral radius gradient for a station upstream of the
first measured profile. Then trial calculations were carried out to find
the Reynolds number and displacement thickness at the upstream station that
would result in the experimental conditions at the first experimental pro-
file. The final calculations were initialized with these values. The Mach
number distributions in Figure 17, and the assumption of an adiabatic wall
were used as boundary conditions. Calculations were performed twice, first
with the assumption of constant total enthalpy, (g’ = O) and again using the
energy equation with Pr = 0.78 and Pr, = 1.0 . As in the case of the
constant pressure profiles the difference was small.

Figures 18 and 19 show the experimental and theoretical variation
of 6* and ¢ . In both cases the calculated values compare very well
showing that the convergence and divergence has been properly accounted for.
The points marked with squares were calculated using the von Karman integral
momentum equation with the experimental values of Cf and 6*/9 . This

verifies that the symmetry of the flow was good. The results of the skin

friction calculation are shown in Figure 20. Although the tendency of the
calculated C is correct in all cases, the prediction is generally some-
what high. At present the reason for this is not known.

The profiles are shown in Figures 21 to 24 . The first few
profiles compare well in most cases, which shows that the method of init-
ializing the calculation is adequate. However, near the region of the waist
of the body the calculated profiles begin to diverge from the experimental
profiles. Beyond the region of the waist the Mach number distribution out-
side the boundary layer reported by Winter, Smith and Rotta is almost con-
stant in each case. On the other hand, the experimental profiles change very
much beyond this point. Therefore, either the external Mach number variation
is not indicative of the Mach number variation inside the layer, due perhaps
to the presence of Mach waves, or there is an effect other than that of pres-
sure gradient which has not been taken into account. One possibility is the
effect of longitudinal curvature on the structure of the turbulence itself.

Experiments such as those of Eskinazi and Yeh [247] in constant property flow
have shown that the mechanism of the turbulent motion is affected by longi-
tudinal curvature. Mellor also pointed out [5] that this was probably a sig-
nificant effect in some incompressible boundary layer flows. It is proposed
that faster moving fluid farther from the wall would be inhibited from mixing
with fluid close to the wall by a centrifugal force acting away from the wall
on a convex wall, and encouraged to mix by a centrifugal force on a concave
wall. Thus in the more stable case on a convex wall, the effective viscosity
would be reduced, and on a concave wall the effective viscosity would be in~
creased. This is the defect which is apparent in the theoretical calculations.
In the region before the waist, where logitudinal curvature is small, the cal-
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culations compare well. Beyond the waist, where longitudinal curvature is
large, the calculated profiles are not as full as the experimental ones, in-
dicating that the effective viscosity used in the calculations was not large
enough. This effect was also apparent in calculations of data measured by
Mclafferty and Barber f25] on a concave surface. Here, although the experi-
mental boundary layer did not separate, the calculated boundary layer sepa-
rated after a short distance in the adverse pressure gradient. Again it is
likely that this separation resulted from a lower value of effective viscosity
in the calculations than in the experimental flow. Recently Rotta [26] has
re-examined the Winter, Smith and Rotta [23] data. He points out that in com-
pressible flow on an adiabatic wall the curvature effect is amplified by the
density stratification. This would explain the observation that the theory
predicts the profiles after the waist better for the lower Mach number cases
than in the higher ones.

Heat Transfer

Although a considerable amount of work has been done on heat trans-
fer in turbulent boundary layers, very few temperature profiles have been
measured compared to the number of velocity profiles measured. Furthermore,
few heat transfer measurements have been at moderate Mach numbers. Most of
the data is elther from constant property or hypersonic flow. Unfortunately,
the hypersonic experiments, such as Lobb, Winkler and Persh [18] and
Danberg [ 27 ] were at Reynolds numbers which were too low for the hypothesis.
A series of temperature profiles for an incompressible, constant density flow
was calculated for comparison with some profiles measured by Reynolds, Kays
and Kline [ 28 7. Following the boundary conditions reported for the data,
calculations were made at constant pressure and constant wall temperature.
The profiles were calculated with Pr = 0.78 and Pry = 1.0. A turbulent

Prandtl number of one gave the best results although small variations in
Pry had little effect. However, the data available are not sufficient to

make a definitive judgement on the best value. The calculations of the series
of temperature profiles are compared with the data in Figure 25 . The
prediction is quite good.

Another comparison is afforded by a group of Stanton number dis-
tributions measured by Moretti and XKays [ 29 J]. These again are incompress-
ible constant density flows but they include a wide variety of longitudinal
wall temperature distributions and pressure distributions. The calculations
were performed with the experimental velocity and temperature boundary condi-
tions shown in the bottom two graphs of Figures 26 to 37 . The experi-
mental Reynolds number and momentum thickness were only reported at one point
in the flows. These are noted on the graphs of mainstream velocity distribu-
tion and the position of the measurement is indicated with an arrow. In order
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constant-property temperature profiles, measured
by Reynolds, Kays and Kline [28] on a heated flat
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temperature profiles, shown with unbroken lines.
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to match these values, preliminary calculations were made and the initial
conditions reset to match the experimental momentum thickness at the reported
point. Unfortunately the values of Rsg for all of these flows were rather
low. Although in many cases 55 stayed above 2500, the strong mainstream
accelerations in other cases caused 6* to decrease and therefore Rs to
drop below 2500. Because of this the hypothesis is in error at some of the
most interesting places. Those cases in which this happens are marked with
a vertical line on the Stanton number plot at the x position where it
occurs.

The measured and calculated values of the Stanton number distribu-
tion are plotted together at the top of Figures 26 through 37 . The rapid
changes in Stanton number are predicted well in the decelerating case,

Figure 36, and the cases with lower accelerating pressure gradients. Even
the last case, where the temperature distribution is a series of alternate
temperature steps is predicted well. The calculated Stanton numbers continue
to compare well in the flows with strong pressure gradients (Figures 30 to 33)
as long as R is above 2500. Furthermore, when R gdoes go too low, the

s
calculations still have the correct tendency for a short distance. Therefore,
this is a favorable beginning for the effective diffusivity . Still more

data are necessary in compressible flow at higher Reynolds numbers to test
fully the validity of the effective diffusivity.

V. CONCLUDING REMARKS

The results cited demonstrate that the effects of compressibility
have been correctly incorporated into the effective viscosity hypothesis for
constant Mach number flows. The effect of Mach number on the skin friction
coefficient, on the profile shape, and on the growth of 5% are predicted
guite well. It is unfortunate that more data in compressible flow with pres-
sure gradients are not available. The only flows for which calculations
were made were flows with positive pressure gradients. In these cases the
results were quite good, although to complete the verification of the hypoth-
esis data taken in flows with favorable pressure gradients and data in flows
with separation are required. In the positive pressure gradient data that
was examined there were regions of almost constant pressure flow but with
strong longitudinal curvature which were not predicted well. This and other
circumstantial evidence seems to indicate that there is an effect of longi-
tudinal curvature on the turbulent structure which has not as yet been in-
cluded in the hypothesis. (An experimental study of wall curvature effect
is in progress at Princeton University.)

Based on the limited amount of data, the results obtained using
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the effective diffusivity in incompressible flow with heat transfer are also
favoralbe. Again, it would be useful if more temperature profiles were avail-
able, expecially from compressible flow, to establish further confidence in
the theoretical predictions.

Princeton University
Princeton, N.J., April 11, 1968
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APPENDIX A. ORDER OF MAGNITUDE ANALYSIS

FOR EQUATIONS OF MOTION

An order of magnitude analysis is most conveniently performed with
the equations in non-dimensional form. Accordingly, the dependent wvariables
will be referred to their values at some point, r, in the undisturbed stream,
and x and y will be referred to a representative dimension of the body,
£ , such that 8u+/5x+ is of order unity. The new variables are

Son Sox S f_ o v _ PP
U ’ U ’ U L > P= 2
r r r e o U

r (S r
r
+ (@]
o h + h + b'd + y
h" =— , B =p/— , x =3, y =Y . (A1)
h e
e r
r
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If these variables are introduced into equations (2a) through (2f), the re-
sults are
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Below each term is a notation of its' magnitude in accordance with the dis-
cussion which follows.




To begin with, the thickness of the boundary layer, & , is as-
sumed to be considerably smaller than £ , so that &( )/By+ is of order
1/e , (€ = 6/2 << 1) . Then, on the basis of experimental evidence,
(Laufer [T], Kistler [30]) some assumptions are made about the turbulent
correlation terms,

w v =0(Cc.) , (A3a)
) 7 7
Gt oY), (A3b)
+2 + 4+
v =0(u v ) s (A3c)
+ 7 + 4 + 7 + '
ou =0p v ) . (A34)

Now, since the change of y+ across the layer is of order € , it is clear
from (A2a) that v* must also be of order €& . Furthermore, if the equa-
tions_are to describe a boundary layer flow, the turbulent shear stress term,
dp' ut %t ) oyt , must be of the same order as the inertia terms in the x
momentum equation. Therefore Cg must be of order €, which EE in agree-
ment with experimental results. Finally, changes of pt and ht in the

xt directlon are assumed to be of the same order as the changes across the
layer, Ap+ and AH¥ respectively. This is in keeping with the method

used for u’ , Where AM+ in the xt direction is taken as order 1.

7 1 I /

To make statements about terms contailning p+ u+ and p+ v+ it
is necessary to put an upper bound on p+' . Ior an order of magnitude anal-
ysis it is sufficient to say that p+' could result from several causes:

a) turbulent bulk transport of fluid from regions of different density, ve-
locity and enthalpy; b) turbulent pressure fluctuations; c) molecular viscous
dissipation caused by the fluctuating velocity; and d) molecular heat transfer
driven by the fluctuating enthalpy.

Except in the regions very near the wall, molecular transport is
generally assumed to exert negligible effect on the mean equations of motion.
The role of viscosity, or conductivity, is to establish the smallest possi-
ble scale of turbulence. But for sufficiently large Reynolds number this
smallest scale 1s far removed from the scales of turbulence that play a role
in the turbulent transport processes.
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The possible effect of pressure fluctuations is not as clear.
Kovasznay [31] has measured the pressure fluctuation (expressed as the mass
flow fluctuation) just outside the boundary layer, which he feels to be in-
dicative of the pressure fluctuation inside the boundary layer. He found
the mass flow fluctuation to be of the order of 0.l per cent at a Mach num-
ber of 1.75, whereas he found the velocity fluctuation in the boundary layer
to be 2 to 3 per cent. Therefore, until more data is available, the assump-
tion that the pressure fluctuations are negligible seems to be Jjustified.

If the bulk transport is the major cause of density and enthalpy
fluctuations, then the fluctuations should be correlated with the velocity
fluctuations, since it is the latter which carry fluid with one density and
enthalpy into regions with other average values. Furthermore, density and
enthalpy should be correlated if pressure fluctuations are negligible. Both
Kovasznay [31] and Kistler [307 have found a strong negative correlation
between the temperature and the velocity. This should be expected since the
region near the wall has a relatively lower velocity and higher temperature
than the region far from the wall. Furthermore, studying a wide variety of
Mach numbers and, therefore, static temperature differences across the layer,
Kistler found that the distribution of static temperature fluctuations was

very nearly proportional to the static temperature difference across the lay-

er., This is also to be expected if the dominant effect is bulk transport,
since more extreme fluctuations can only occur if there are wider variations
of the transport property available within the layer. Although these obser-
vations are far from a proof that bulk transport is the dominant cause of
density and enthalpy fluctuations, they make an assumption to that effect
seem reasonable.

The conventional representation of this assumption is the Reynolds
anglogy. The Reynolds analogy is that the fluctuation of the transported
property is proportional to the product of the gradient of the transported
property and the velocity fluctuation. In the case of pt Q*:T, this is

i ve MR A
of v s ut §p—+/ 5% . (Ak)
dy oy

Of course equation (AL) is consistant with eqguations (7) and (13) which are
discussed in Section II. For an order of magnitude analysis it is adequate
to_approximate 851/5y+ as the average density gradient across the layer,
AoT/e , and duT Ryt as the average velocity gradient, aut/e (~ 1/e) .
Therefore
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The remaining term in the x momentum equation is the pressure
gradient, OpT/Ox' , which must be of the same order as the inertia terms so
long as the velocity in the external flow does not approach zero. However,
the only term on the_ left hand side of the y momentum equation that is of
importance is o(p* vt 2)/Qy*t . TIf the magnitude of the pressure gradient
across the layer, Op /Oy , is represented by Ap /€ , it is clear that
apT = 0(e + €ppT) .

By following the same approach that yielded (A5), the following
relations may be shown:

’ / / ' —
+ + + + +
u h , v h =0(an) , (A6)
and
+ 4! ¥ F
P h =0(&rp AL ) . (AT)

+
For correlations involving the total enthalpy fluctuation, n° , this
quantity can be obtained by subtracting equation (A2e) from the same equa-
tion before Reynolds averaging has been performed. The result is

- 4 - = 4+ + 2 + 2 +2 f
(l + Zzl M?jho+ = h+ + 721 M: {Eu u  +u -u + v -v + W -w

(a8)

' 4
+
Then, after multiplying (A8) by v , for example, and Reynolds averaging,
the result is
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7 .7 — T 7 _— T
+ ot 1 + .+ 2 + +
v p¥ = — {v h + (y-1)M_ u u v+ k 5 (A9)
y-1 _2 L e R
1l+—M
2 —
€nh €
Therefore
+7 ot/ Fo
v h = 0(eah ) . (Al0a)

Similiarly it can be shown that

o( eA;O:) s (ALl0b)

[
]

and

- =
olene ARTT) . (A10c)

§e]
[ny
n

Having estimated the magnitudes of the terms as noted on equa-
tions (2), the significance of these terms _may be assessed under various
conditions. Evidently the magnitude of ap*

h

o O

+

Ap =1 - (A11)

[ =2

/ W
7-1 2 ?
1+ > Me

is of prime importance in the ordering of the terms. For very small Mach
number and heat transfer, ApT is small. In this case equations (2) would
simply reduce to the familiar constant property equations of motion. How-
evyer, if the heat transfer is substantial or the Mach number is large,

NP will be of order unity. Apparently several more terms in equations (2)
become important and the resulting equations can be written
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9 , + F o , + ¥ + 7+
— (p u )+ - (pv +p v )=0 (Al2a)
dx y
—1'_1'8—: T+ + 4 ;:. d , + +14! é;:
pru ot (p v +p v )—m+—(p u v ) =-—""— s (Al2b)
pd + + dx
oy oy
- o+ - T r o+ — ’ 7
+ + 3 + o+ + 7+ h + +° o+
p u +{(p v + ) 9 + —é—-(p v n° ) =0 ,  (Al2e)
+ + +
& oy oy
(1, 2= 2\ o+ ¥ y-1 .2 +°
1+5"M /b =h M u ; (A12d)
2+  + 4
1+ yM_p =0p h . (Alze)

The y momentum equation_is not included since its only contribution is to
show that ap't = 0(€ + €Ap”) and therefore, the variation of Jp'/ox™
across the layer 1s negligible in the x momentum equation.

It is interesting to note that the size of Aho+ does not serve
to distinguish between the relative importance of the terms in the energy
equation, but simply whether or not the equation as a whole has significance
in a particular situation. In the energy equation, as in the x momentum
equation, it is the magnitude of Ap"T which selects the meaningful terms.

In equations (Al2b) and (Al2c) it is possible to rewrite the shear
stress and heat flux terms. The turbulent shear stress may be written as

T = - p “u v - (Al3)

Then with the aid of equation (A8) the third term in equation (Al2c) may be
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written

— 7 — — B

+ 0+ + + o+
ce v Y s VR rW(-p W V). (A1H)

I - / /
+ + + 4
Qg = -0 v h > (A15)
equation (Alk) becomes
o+l T+ ¥
-p v h =q, *tu T . (a16)

When written in terms of the original variables, the boundary

layer equations (2) are

a%(pu)+§—y(pv+5—’§_’=o (AlTa)
pag—;+(5;+ﬁ)g—§=-§x—£+:i s (A17D)
;ag—f+<;;+:?>g-§=§—y<at+;:t> , (n17e)
;5=5+%52 , (A1TQ)
pe=z-7igﬁ ) (A1Te)
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and

all

(_FQ !

T

D_,s

(A171)

(AlrT7g)
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APPENDIX B. COMPARISON OF EFFECTIVE VISCOSITY HYPOTHESIS
WITH ALTERNATE FORMS

It is interesting to compare the functional relationship for v

used in other hypotheses with (8) . This comparison is complicated by
the fact that apparently there are no effective viscosity hypotheses in the
literature (see Rotta, [327, for instance) besides the present one (Mellor,
[5 7) that have used two scales. Some simply restrict their range of appli-
cability to the wall layer or the defect layer. Many others, however, stip-
ulate a wall layer relation and then assume the validity of the scaleless

. overlap layer formulation to the edge of the boundary layer. Since these

are all essentlally single layer models they will be treated as such and a
comparison will be made on that basls. Furthermore most effective viscosity
hypotheses were originally intended for use in incompressible flow. Many of
them could be extended to include the effects of compressibility and a few
have (Lin and Chen, [337). However, if they are untenable, their weaknesses
are usually evident even in incompressible flow.

The first class of hypotheses in Table I is based on the assump-~
tion

v o= Ve(uT s Y V) ’ (Bl)

in the wall layer. Although, for small pressure gradients, the results of
these hypotheses may not differ greatly from the present hypothesis, they

G

will, near separation. As u. = EE-Q O these hypotheses all yield Vé+ v
e

for the entire wall layer, which is clearly an unacceptable result. For the

same reason, Clauser's [ 2 1 assumption for the defect layer,

*
Ve = Ve(uT 2 ¥ o SKU) E) (B2)

is also invalid. Besides these hypotheses in which v, is explicitly assumed

to be a funetion of U o most of the other hypotheses in Table I use u,. as



a parameter in the condition for matching the viscous sublayer to the over-
lap layer. Again, near separation these conditions would cease to be mean-
ingful. However, on the assumption that the matching conditions could be

redefined, the effective viscosity functions themselves will be considered.

The next class of hypotheses are those which use a von Karman [41]
similarity hypothesis for the overlap layer, and which supply some other
function for the viscous sublayer. When the pressure gradient is zero, the
von Karman similarity hypothesis does give the correct logarithmic velocity

profile in the overlap region (where T = TW) . It also ylelds the correct

functional dependence, U~ ¥y , when T = O at separation. However, if

the constant of proportionality is adjusted to fit the zero pressure gradient
case, the result for the separating flow is a factor of two too high to agree
with Stratfordts [ 42 ] data. Stratford'!s data appear to favor a variation
in the overlap layer which goes as

1 ap
2 Y . constant. (B3)

RPN A

This is the result predicted by the Prandtl mixing length form used in the
present hypothesis. Furthermore, both of the examples of this type of hy-
pothesis might more legitimately be called three layer models since the forms
of the effective viscosity in the laminar sublayer are not the same as they
are in the overlap layer. In the laminar sublayer, Bjorgum [ 37 ]assumes

v o=V <ﬁ,§%,;> 5 (BLa)

e e
and Deissler [ 38 ] assumes

v, = Ve(y ) u P) ;) ) (BLDb)

whereas they both use
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in the overlap layer. It would seem that, until the need for a three layer
model is evident, a two layer model represents a more concise and simple
description of the data.

Table I gives two more hypotheses which do not differ greatly from
the present one. The first one (Loitsianskii [39]) applies to the wall layer.
Until more data is available in the laminar sublayer, a meaningful comparison
with this essentially similar empirical function is not possible. The only
reservation about this hypothesis is that the parameter which defines the
range of the functions depends on uT , as discussed above.

The last hypothesis in the table (Maise and McDonald, [401) per-
tains only to the defect layer. It also appears to be the only one orig-
Inally proposed for compressible flow. It was presented not as an equation
but in the form of a plot demonstrating the near Mach number independence
of the mixing length function for constant pressure boundary layers. For
this reason the equation given in the table is only an approximation. The
functional relationship for ve is

du
ve=ve(6,y,a—y s (B6)
or
Ve +(281: du
L T (=7)
8 —
oy

when written in the form of an effective wviscosity rather than a mixing length.
The strong similarity between these apparently dissimilar hypotheses, (8a)
and (BT) , can be established by considering an epproximate relation between

*
Us_ and 5% g—‘; with the aid of Figure 38 which shows that,
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*
TABIE TI:

SUMMARY OF HYPOTHESES FOR Ve
ASSUMED
DIMENSIONAL AUTHCR SPECTIFIC FUNCTIONS RANGE
ARGUMENTS
+
Squire y o=y (0<y < ¥y v/uT) !
|
3] . . |
vlu ¥y s v) ve = kluy - v v) +v (ylV/uTSY)
+ +
Reichardt v =kluy-y. vtangh(yu [y, v)]+v (0 <y)
(35] L Tl B
* U K
v =Ku y (y < & o ;)
* Clauser T T
(2] - & UK (6*-9—1-{' )
v, = k ku KSY
T
LI— 2 - i +
v, =(-0.1y) (u/v)” [owpy| + v (0<y <y, v
Hama,
(36]

T8 Py v

, +
(v, v/ <)

van Driest

[10]

i

Y - exply u /v I ]EIBE/B:ﬂ + v

(0<v)

*
largely from Rotta [32].
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TABLE I: (continued)
ASSUMED
DOENS TONAL, AUTHOR SPECTFIC FUNCTIONS RANGE
ARGUMENTS
2—
) s 2 =2, .~
5y %) - & &Iyl + v (0 v <y Vi)
vy . i T
y BJjorgum
and
- 371 2, e 2 . 2.2
LA =k (PRy )’ / (3%ufoy ) + v (v, v/a_ <)
e dy
2 — 2 — +
or =n uyll-exp(-n uwy/v)]+v (Osysyl v/uT)
— Deissler
Ve(u )Y [38 o 2 2
- — o
3 = (oupy )Y %y + v (7 v/u_ < ¥)
- (0 T v/a)
i = v <y <y v
ou Loitsianskii
Ve<a_y » 3 V)
Lo - 2 b+ 2 2
(39] - “/K vy (dufdy)” - «k y-]': v o+ v (YI V/L'LT <)
~ | Maise and - K y2 3w /oy | (v < o/ K k)
Bu |
v (s, v, 5_3;) IMcDonald |
- [4o] - ?
| -k 5% pupyl (s./K" [k <)
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FIGURE 38.

cl

AG~S8L e

Tllustration of the relationship between the effec-
tive viscosity scales S;U and 82(d3T/Qy) for the

defect layer,
* =\ .y (—Nl 2(55\
USK—JO(U u/dy~ = aAu/~ > B By/
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* r -
Ud ='j @ -u/dyz 1

. . . (B8)

/|
%15|
..

57 (

H
e
s
o
~
&
N

In light of equation (B8) there is probably little basis for making a

choice between the two. A well defined scale such as 6; is perhaps a

slight advantage over the use of the less well defined & . This is why
(8a) was used in the present calculations.

The relationship shown in (B8) brings out the important point

that U6: is a measure of the average velocity gradient in the boundary

layer. A self-consistent effective viscosity hypothesis for compressible
flow could also be formulated using the average mass flow gradient,

* ‘lw -—
p VB = Jo (peU - pu)dy . Several hypotheses of this type actually

have been proposed for compressible turbulent wakes (Zakkay and Fox, [L37).
By analogy with the argument preceeding (8) , such an hypothesis might
be written

T = H Sy
with
=pu GI Ng éé;g\ for the wall layer (B10a)
Mo e P ) v ) ’
and
* dp u
= S for the defect layexr B1Ob
He IJ'e(peUS P) y oo dy r € aetec yer, ( )
so that
" 22— —
<. ¢*< Ky dou “\) , (Blla)
o B oy
22 - -
v
e* -0 (X * %Lu\‘ ? (B1lb)
p
peUS peU6



and in the overlap region

223 u

Mo = K'Y 55 . (B12)

The correlation u ,vl = fr/p mist be very nearly invariant under a stream-
wise Galilean transformation as is the hypothesis of equation (8) . How-
ever, that is not the case for the example above or for that matter any
hypothesis which uses a function of (peU - pu) in the defect layer or

P U in the wall layer, since both the differential and the integral of these

gquantities would then depend on the magnitude of the velocity. On the other

hand, the differential and integral of (U - u) and U are independent of
¢/

reference frame as is u v .
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APPENDIX C. EQUATIONS FOR THE
RUNGE-KUTTA METHOD

The Runge-Kutta method is a procedure for solving first order
differential equations. 1In order to apply this method to a linear equa-
tion of the form

cgln) [f” * cs(n)] =c(n) £+ c(n) £+ cy(n) £+ Cp(n) o)

the equation must be rewritten as a set of first order equations as follows.
Iet

3)

£ _ ¢ s f2) _ g s £(3) . C6(f” + cs) . (c2)
Then
a8t (2 a2 £3)
T s TG, - C5 .
(3) (3)
afan = 03( f—c_6_ - 05\} + Caf( ) + le(l) +C, - (¢3)

i
n
n, + An) are given to fourth order accuracy by the re-

From Hildebrand [ 44 7], if the walues of f( ) at 1 are known, the

values at nn+l(=

lation,

= )_,_ / 2

Ry O ACTR OB C N -




where

(1) (2) (2) £(3)
a =AM f > a =AM —-C 5
1 1 <c6n 5,
(3) .1 .(3)
T +§a
a;l) An(f(2)+%a§2)\) , a(22)=m< : - g
C n+d
n+d
(3) , 1 .(3)
(1) (2) . 1 (2 2 rrza
557 =@ e 3 a) ag)=m< Cq - "% 4
n+s 2
(3) (3)
1 (2) o > £ + 8
) = m(e +a§)> ’ "‘i):‘\" Ce : R
el n+l
(3)
n
(3) 1 .(3)
(3) fotey (2) . (2)
ay”’ = ’:C3n+%— o -c5n+% +C2n+-21- (£ +da))
n+d
, (1)

87




88

(3)
T + 3 a
2 2 2
a(33)—ATl c, 5 - Cq * Cp (f( )“L%a(z )\,’
3 S n+s n+3
+C (f(l) + 3 a(l)>+C } ;
\ )‘l* 1
n+§ n+§
(3) , .(3)
il + a
n—|-l 6n+l n+l Il+l '
(1) (1)
+ Cl (f + a3 >+ Cll— P)
n+l n+l
_ 1 3
Cn*‘% - <Cn T O . (c6)
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APPENDIX D. ASYMPTOTIC SOLUTION FOR LARGE 7

The turbulent Prandtl number has been assumed to be equal to 1
in the analysis which follows.

Por large n , £ -1 , £'-0 s T

* *
61{ 6k’.

g'-o0 , T K- , T —K-3 and from equation (25),
5 B ¥

(7-1)M2f’_<l+ZiM2>Hg'

e 2 e

6+ 1+ = > ) (D1)
1+ (y -1) M,

2
) (DE)
L+ (y - 1) M:f

4

(y - 1) Mi £ (l+ZiM§>Hg”
g - — .

*

56_ —
b'd

2 % _ ( 7-1 2)* )
(7-1)Me6fx- 1+ M )5 Hg,

2
l+(7’-l)Me

2
[1"(7'1)1“?{'1 (e +Eg) )

+ v = £t'+>¢g . (@3
[+ (7 - 1) P )

Then the asymptotic forms of equations (24a) and (24b) are

7- 7-1 .2

5: 1+ 21M5 % 1+ ElMe
—k£"+qn-1)2" ~av———51£' -5 fx'=V————2-Hg' )
® 1+ (7-1) M, 1+ (r-1) M



L]
. w;:émﬁ:

and

mw /4 * .
Kg +Qn-1)g -58g_ =0 (Dlb)

In order to insure the satisfaction of the fourth and seventh boundary con-
ditions (28) , the asymptotic solutions of £’ and g’ were assumed in
exponential form,

2
e () = R exp (- sl L (052)
; (n_- 1)°
g (TI,X) = S(X> exp = ZS(X) . (D5b)

Although strictly speaking R and S are functions of 1 as well as x ,
the 1 dependence is small. Furthemmore the outer boundary conditions
on £’ and g’ can be satisfied with knowledge of only r{(x) and s(x) .

R(x) and 8(x) can then be eliminated using f Knl,x) and

g Knl,x) , where n. is a point far from the wall. Then

(ny - l)2 -(q - l)2

£ (n,x) = £(n,x) exp 5205 (D6a)
, , (n, - 1)° - (n - 1)°
g (n,x) = & (n,x) exp 2o (x) . (D6b)

Then r(x) and s(x) may be found by inserting (D5a) and (D5b) into (Dha)
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and (Dib) . The coefficients of (n - 1) are

*

8* 8k

2 Tx T @ =K ’ (DTa)
5

and

*

5* Sk

?SX+QS=K§ . (Do)

The solution of these equations can easily be shown to be

2 *
Pe U B o b 4 Sk o %
(x) =| =2 Jr(x) + —o— [ S (om)% ax (D8a)
p UD (p U ) ° 5
e e
and
& - 5
Pe X o %
o(x) = (—220 s(x)+__§K____ ‘[ ._k.(pU)5 ax . (D8b)
* [e) *.2 x * e
L Ud (peUa) o 8
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APPENDIX E.  BOUNDARY IAYER EQUATIONS COF MOTION
IN AXISYMMETRIC FLOW

Following an argument similar tec that in Section II , the bound-
ary layer equations for a steady flow at moderate Mach number and heat
transfer for which B/RLAT = 0(1) , are

a—%%+§—y[r(§$+ p'v'\/] =0 , (Ela)

raag_gu\amp'v")%:-%Pﬁar; ) (E1b)
—-an® n° SR

rpué—-x—+r<pv+p'v’>g_y=§?y-E-(q_+u'ril . (Elc)

The definitions of T and E and the effective viscosity hypothesis are
unchanged. The sole difference in the effective viscosity is that in flow
with lateral curvature the defect scale becomes

[+ ¢}
-x- —_—
U6k=f (U - u) R—r dy .
o AT

(E2)

As for the two dimensional equations, new variables are introduced,

p U - E E
e
f I(TI;X) = A(

) peU

) (E3a)



pe
o(n,x) = f" s (E3b)

n° - n°
) e
g (n,x) = — s (E3c)
h° - h
e T
T a*
A=z=—=1+n ’ M= (E3a)
TAT IAT
n = "%; ’ (E3e)
5
*
R 5
D = (;.AT.)X , (E3f)
IlAT-
(p U} &
e X
P=—0g ’ (E3g)
e
*
p UB ;
qQ = (RLAT. e )x , (E3h)
RLAT. peU
¥
Ub
V=7 . (E31)
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When rewritten in terms of these variables, the equations of motion be-
come

e { (o roto) (F-2) e -32e) (- S

2 3
[_?\_-_9_) Q. Ay X e ’
+ (9 . A(n f)+P2A nA(l £) f

7 ”
’ £\ T A0 T * ) f
9 (1..——-)_9 + ——A -agfx<1-—>=o s (Eha.)
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-1 2
2(1+55=1) (1 -5

0 = Y1 2

-1 _2 77,12 ’
1+A/1+7—'-2—-Me(l-f/A) (1+==u) (1 -58")

where primes indicate differentistion with respect to 7 .

(Ebe)
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